Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Allergy Clin Immunol ; 150(2): 302-311, 2022 08.
Article in English | MEDLINE | ID: covidwho-1945361

ABSTRACT

BACKGROUND: Whether children and people with asthma and allergic diseases are at increased risk for severe acute respiratory syndrome virus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: Our aims were to determine the incidence of SARS-CoV-2 infection in households with children and to also determine whether self-reported asthma and/or other allergic diseases are associated with infection and household transmission. METHODS: For 6 months, biweekly nasal swabs and weekly surveys were conducted within 1394 households (N = 4142 participants) to identify incident SARS-CoV-2 infections from May 2020 to February 2021, which was the pandemic period largely before a vaccine and before the emergence of SARS-CoV-2 variants. Participant and household infection and household transmission probabilities were calculated by using time-to-event analyses, and factors associated with infection and transmission risk were determined by using regression analyses. RESULTS: In all, 147 households (261 participants) tested positive for SARS-CoV-2. The household SARS-CoV-2 infection probability was 25.8%; the participant infection probability was similar for children (14.0% [95% CI = 8.0%-19.6%]), teenagers (12.1% [95% CI = 8.2%-15.9%]), and adults (14.0% [95% CI = 9.5%-18.4%]). Infections were symptomatic in 24.5% of children, 41.2% of teenagers, and 62.5% of adults. Self-reported doctor-diagnosed asthma was not a risk factor for infection (adjusted hazard ratio [aHR] = 1.04 [95% CI = 0.73-1.46]), nor was upper respiratory allergy or eczema. Self-reported doctor-diagnosed food allergy was associated with lower infection risk (aHR = 0.50 [95% CI = 0.32-0.81]); higher body mass index was associated with increased infection risk (aHR per 10-point increase = 1.09 [95% CI = 1.03-1.15]). The household secondary attack rate was 57.7%. Asthma was not associated with household transmission, but transmission was lower in households with food allergy (adjusted odds ratio = 0.43 [95% CI = 0.19-0.96]; P = .04). CONCLUSION: Asthma does not increase the risk of SARS-CoV-2 infection. Food allergy is associated with lower infection risk, whereas body mass index is associated with increased infection risk. Understanding how these factors modify infection risk may offer new avenues for preventing infection.


Subject(s)
Asthma , COVID-19 , Hypersensitivity , Adolescent , Adult , Asthma/epidemiology , COVID-19/epidemiology , Child , Humans , Hypersensitivity/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1493345

ABSTRACT

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Subject(s)
Benzothiazoles/pharmacology , COVID-19 Drug Treatment , Oligopeptides/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Animals , Benzamidines/chemistry , Benzothiazoles/pharmacokinetics , COVID-19/genetics , COVID-19/virology , Cell Line , Drug Design , Epithelial Cells/drug effects , Epithelial Cells/virology , Esters/chemistry , Guanidines/chemistry , Humans , Lung/drug effects , Lung/virology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Oligopeptides/pharmacokinetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/drug effects , Serine Endopeptidases/ultrastructure , Small Molecule Libraries/pharmacology , Substrate Specificity/drug effects , Virus Internalization/drug effects
3.
iScience ; 24(10): 103115, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1401548

ABSTRACT

Numerous studies have provided single-cell transcriptome profiles of host responses to SARS-CoV-2 infection. Critically lacking however is a data mine that allows users to compare and explore cell profiles to gain insights and develop new hypotheses. To accomplish this, we harmonized datasets from COVID-19 and other control condition blood, bronchoalveolar lavage, and tissue samples, and derived a compendium of gene signature modules per cell type, subtype, clinical condition, and compartment. We demonstrate approaches to interacting with, exploring, and functional evaluating these modules via a new interactive web portal ToppCell (http://toppcell.cchmc.org/). As examples, we develop three hypotheses: (1) alternatively-differentiated monocyte-derived macrophages form a multicelllar signaling cascade that drives T cell recruitment and activation; (2) COVID-19-generated platelet subtypes exhibit dramatically altered potential to adhere, coagulate, and thrombose; and (3) extrafollicular B maturation is driven by a multilineage cell activation network that expresses an ensemble of genes strongly associated with risk for developing post-viral autoimmunity.

4.
Pathog Immun ; 6(1): 55-74, 2021.
Article in English | MEDLINE | ID: covidwho-1222332

ABSTRACT

BACKGROUND: Host proteases have been suggested to be crucial for dissemination of MERS, SARS-CoV, and SARS-CoV-2 coronaviruses, but the relative contribution of membrane versus intracellular proteases remains controversial. Transmembrane serine protease 2 (TMPRSS2) is regarded as one of the main proteases implicated in the coronavirus S protein priming, an important step for binding of the S protein to the angiotensin-converting enzyme 2 (ACE2) receptor before cell entry. METHODS: We developed a cell-based assay to identify TMPRSS2 inhibitors. Inhibitory activity was established in SARS-CoV-2 viral load systems. RESULTS: We identified the human extracellular serine protease inhibitor (serpin) alpha 1 anti-trypsin (A1AT) as a novel TMPRSS2 inhibitor. Structural modeling revealed that A1AT docked to an extracellular domain of TMPRSS2 in a conformation that is suitable for catalysis, resembling similar serine protease inhibitor complexes. Inhibitory activity of A1AT was established in a SARS-CoV-2 viral load system. Notably, plasma A1AT levels were associated with COVID-19 disease severity. CONCLUSIONS: Our data support the key role of extracellular serine proteases in SARS CoV-2 infections and indicate that treatment with serpins, particularly the FDA-approved drug A1AT, may be effective in limiting SARS-CoV-2 dissemination by affecting the surface of the host cells.

5.
J Pediatr Gastroenterol Nutr ; 72(5): 718-722, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1180675

ABSTRACT

ABSTRACT: Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can lead to coronavirus-induced disease 2019 (COVID-19). The gastrointestinal (GI) tract is now an appreciated portal of infection. SARS-CoV-2 enters host cells via angiotensin-converting enzyme-2 (ACE2) and the serine protease TMPRSS2. Eosinophilic gastrointestinal disorders (EGIDs) are inflammatory conditions caused by chronic type 2 (T2) inflammation. the effects of the T2 atopic inflammatory milieu on SARS-COV-2 viral entry gene expression in the GI tract is poorly understood. We analyzed tissue ACE2 and TMPRSS2 gene expression in pediatric eosinophilic esophagitis (EoE), eosinophilic gastritis (EG), and in normal adult esophagi using publicly available RNA-sequencing datasets. Similar to findings evaluating the airway, there was no difference in tissue ACE2/TMPRSS2 expression in EoE or EG when compared with control non-EoE/EG esophagus/stomach. ACE2 gene expression was significantly lower in esophagi from children with or without EoE and from adults with EoE as compared with normal adult esophagi. Type 2 immunity and pediatric age could be protective for infection by SARS-CoV-2 in the gastrointestinal tract because of decreased expression of ACE2.


Subject(s)
COVID-19 , Enteritis , Adult , Child , Eosinophilia , Gastritis , Gene Expression , Humans , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2
6.
Chem Sci ; 12(3): 983-992, 2021 Jan 21.
Article in English | MEDLINE | ID: covidwho-1069124

ABSTRACT

The entry of the coronavirus SARS-CoV-2 into human lung cells can be inhibited by the approved drugs camostat and nafamostat. Here we elucidate the molecular mechanism of these drugs by combining experiments and simulations. In vitro assays confirm that both drugs inhibit the human protein TMPRSS2, a SARS-Cov-2 spike protein activator. As no experimental structure is available, we provide a model of the TMPRSS2 equilibrium structure and its fluctuations by relaxing an initial homology structure with extensive 330 microseconds of all-atom molecular dynamics (MD) and Markov modeling. Through Markov modeling, we describe the binding process of both drugs and a metabolic product of camostat (GBPA) to TMPRSS2, reaching a Michaelis complex (MC) state, which precedes the formation of a long-lived covalent inhibitory state. We find that nafamostat has a higher MC population than camostat and GBPA, suggesting that nafamostat is more readily available to form the stable covalent enzyme-substrate intermediate, effectively explaining its high potency. This model is backed by our in vitro experiments and consistent with previous virus cell entry assays. Our TMPRSS2-drug structures are made public to guide the design of more potent and specific inhibitors.

7.
J Allergy Clin Immunol ; 146(1): 1-7, 2020 07.
Article in English | MEDLINE | ID: covidwho-125184

ABSTRACT

Eosinophils are circulating and tissue-resident leukocytes that have potent proinflammatory effects in a number of diseases. Recently, eosinophils have been shown to have various other functions, including immunoregulation and antiviral activity. Eosinophil levels vary dramatically in a number of clinical settings, especially following eosinophil-targeted therapy, which is now available to selectively deplete these cells. There are key coronavirus disease 2019 (COVID-19)-related questions concerning eosinophils whose answers affect recommended prevention and care. First, do patients with eosinophilia-associated diseases have an altered course of COVID-19? Second, do patients with eosinopenia (now intentionally induced by biological drugs) have unique COVID-19 susceptibility and/or disease course? This is a particularly relevant question because eosinopenia is associated with acute respiratory deterioration during infection with the severe acute respiratory syndrome coronavirus 2, the causative agent of COVID-19. Third, do eosinophils contribute to the lung pathology induced during COVID-19 and will they contribute to immunopotentiation potentially associated with emerging COVID-19 vaccines? Herein, we address these timely questions and project considerations during the emerging COVID-19 pandemic.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Eosinophils/immunology , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Animals , COVID-19 , COVID-19 Vaccines , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL